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Abstract

Deep neural networks (DNNs) have shown vulnerabil-
ity to adversarial attacks, i.e., carefully perturbed inputs
designed to mislead the network at inference time. Re-
cently introduced localized attacks, Localized and Visible
Adversarial Noise (LaVAN) and Adversarial patch, pose a
new challenge to deep learning security by adding adver-
sarial noise only within a specific region without affecting
the salient objects in an image. Driven by the observation
that such attacks introduce concentrated high-frequency
changes at a particular image location, we have developed
an effective method to estimate noise location in gradient
domain and transform those high activation regions caused
by adversarial noise in image domain while having mini-
mal effect on the salient object that is important for correct
classification. Our proposed Local Gradients Smoothing
(LGS) scheme achieves this by regularizing gradients in the
estimated noisy region before feeding the image to DNN for
inference. We have shown the effectiveness of our method in
comparison to other defense methods including Digital Wa-
termarking, JPEG compression, Total Variance Minimiza-
tion (TVM) and Feature squeezing on ImageNet dataset. In
addition, we systematically study the robustness of the pro-
posed defense mechanism against Back Pass Differentiable
Approximation (BPDA), a state of the art attack recently de-
veloped to break defenses that transform an input sample to
minimize the adversarial effect. Compared to other defense
mechanisms, LGS is by far the most resistant to BPDA in
localized adversarial attack setting.

1. Introduction
Deep neural network architectures achieve remarkable

performance on critical applications of machine learning in-

cluding sensitive areas such as face detection [16], malware

detection [17] and autonomous driving [11]. However, the

vulnerability of DNNs to adversarial examples limit their

wide adoption in security critical applications [1]. It has

been shown that adversarial examples can be created by

minimally modifying the original input samples such that a

DNN mis-classifies them with high confidence. DNNs are

often criticized as black-box models; adversarial examples

raise further concerns by highlighting blind spots of DNNs.

At the same time, adversarial phenomena provide an oppor-

tunity to understand DNN’s behavior to minor perturbations

in visual inputs.

Methods that generate adversarial examples either mod-

ify each image pixel by a small amount [24, 8, 14, 13] of-

ten imperceptible to human vision or few image pixels by

a large visible amounts [20, 22, 4, 12, 7]. Pixel attack [22]

changes few image pixels, but it requires small images (e.g.,

32×32) and does not provide control over noise location.

Small noise patches were introduced by [20] in the form

of glasses to cover human face to deceive face recognition

systems. Similarly, Evtimov et al. [7] added noise patches

as rectangular patterns on top of traffic signs to cause mis-

classification. Very recently, localized adversarial attacks,

i.e., Adversarial patch [4] and LaVAN [12] have been intro-

duced that can be optimized for triplets (misclassification

confidence, target class, perturbed location). These practi-

cal attacks have demonstrated high strength and can easily

bypass existing defense approaches. Therefore they present

a significant challenge for existing deep learning systems.

Contributions: In this work, we study the behavior of

localized adversarial attacks and propose an effective mech-

anism to defend against them (see Fig. 1). LaVAN and Ad-

versarial patch add adversarial noise without affecting the

original object in the image, and to some extent, they are

complementary to each other. In an effort towards a strong

defense against these attacks, this paper contributes as fol-

lows:

• Motivated by the observation that localized adversar-

ial attacks introduce high-frequency noise, we pro-



(a) Impala (94%) (b) Ice Lolly (99%) (c) Impala (94%)

(d) Squirrel Monkey (58%) (e) Toaster (91%) (f) Squirrel Monkey (57%)

Figure 1: Inception v3 [23] confidence scores are shown for example images. (a) and (d) represent benign examples from

ImageNet [18], (b) and (e) are adversarial examples generated by LaVAN [12] and Adversarial patch [4] respectively, (c) and

(f) show transformed adversarial images using our proposed LGS. As illustrated, LGS restores correct class confidences.

pose a transformation called Local Gradient Smooth-

ing (LGS). LGS first estimates region of interest in an

image with the highest probability of adversarial noise

and then performs gradient smoothing in only those re-

gions.

• We show that by its design, LGS significantly re-

duces gradient activity in the targeted attack region and

thereby showing the most resistance to BPDA [2], an

attack specifically designed to bypass transformation

based defense mechanisms.

• Our proposed defense outperforms other state-of-the-

art methods such as Digital watermarking, TVM,

JPEG compression, and Feature squeezing in localized

adversarial attacks setting [12, 4].

2. Related Work
Among the recent localized adversarial attacks, the fo-

cus of adversarial patch [4] is to create a scene indepen-

dent physical-world attack that is agnostic to camera angles,

lighting conditions and even the type of classifier. The re-

sult is an image independent universal noise patch that can

be printed and placed in the classifier’s field of view in a

white box (when deep network model is known) or black

box (when deep network model is unknown) setting. How-

ever, the size of the adversarial patch should be 10% of the

image for the attack to be successful in about 90% cases

[12]. This limitation was addressed by Karmoon et al. [12],

who focused on creating localized attack covering as little

as 2% of the image area instead of generating a universal

noise patch. In both of these attacks [4, 12], there is no

constraint on noise, and it can take any value within image

domain, i.e., [0, 255] or [0, 1].

Defense mechanisms against adversarial attacks can be

divided into two main categories. (a) Methods that modify

DNN by using adversarial training [25] or gradient masking

[15] and (b) techniques that modify input sample by using

some smoothing function to reduce adversarial effect with-

out changing the DNN [6, 5, 9, 26]. For example, JPEG

compression was first presented as a defense by [6] and re-

cently studied extensively by [5, 19]. [26] presented fea-

ture squeezing methods including bit depth reduction, me-

dian filtering, Gaussian filtering to detect and defend against

adversarial attacks. Guo et al. [9] considered smoothing

input samples by total variance minimization along with

JPEG compression and image quilting to reduce the adver-

sarial effect. Our work falls into the second category as

we also transform the input sample to defend against local-

ized adversarial attacks. However, as we will demonstrate

through experiments, the proposed defense mechanism pro-



vides better defense against localized attacks compared to

previous techniques.

The paper is organized as follows: Section 3 discusses

localized adversarial attacks, LaVAN and Adversarial patch

in detail. Section 4 presents our defense approach (LGS)

against these attacks. We discuss other related defense

methods in Section 5.2. Section 5 demonstrates the ef-

fectiveness of the proposed method LGS in comparison

to other defense methods against LaVAN and adversarial

patch attacks. Section 5.3 discusses BPDA and resilience

of different defense methods against it. Section 6 concludes

the draft by discussing possible future directions.

3. Adversarial Attacks

In this section, we provide a brief background to adver-

sarial attacks and explain how LaVAN [12] and Adversarial

patch [4] are different from traditional attacks.

3.1. Traditional Attacks

The search for adversarial examples can be formulated as

a constrained optimization problem. Given a discriminative

classifier F(y |x), an input sample x ∈ R
n, a target class

ȳ and a perturbation budget ε, an attacker seeks to find a

modified input x′ = x + δ ∈ R
n with adversarial noise

δ to increase likelihood of the target class ȳ by solving the

following optimization problem:

max
x′

F(y = ȳ |x′)

subject to: ‖x− x′‖p ≤ ε (1)

This formulation produces well camouflaged adversarial

examples but changes each pixel in the image. Defense

methods such as JPEG compression [6, 5], Total variance

minimization [9] and Feature squeezing [26] are effective

against such attacks especially when the perturbation bud-

get ε is not too high.

3.2. LaVAN

LaVAN [12] differs from the formulation presented in

Eq. 1 as it confines adversarial noise δ to a small region,

usually away from the salient object in an image. It uses

the following spatial mask to replace the small area with

noise, as opposed to noise addition performed in traditional

attacks:

x′ = (1−m)� x+m� δ, s.t.,m ∈ R
n and , (2)

where � is Hadamard product and δ represents adversarial

noise.

They also introduce a new objective function where at

each iteration, optimization algorithm takes a step away

from the source class and towards the target class simul-

taneously, as follows:

max
x′

F(ȳ |x′)−F(y |x′)

subject to: ‖x− x′‖∞ ≤ ε, 0 ≤ ε ≤ 1, (3)

where x′ is given by Eq. 2.

3.3. Adversarial Patch

Adversarial examples created using the methodology

presented in Eq. 1 cannot be used in physical world at-

tacks because adversarial noise loses its effect under differ-

ent camera angles, rotations and lighting conditions. Atha-

lye et al. [3] introduced an Expectation over Transformation

(EoT) attack to create robust adversarial examples invari-

ant to chosen set of transformations. Brown et al. [4] build

upon Athalye’s work and used EoT to create a scene in-

dependent robust noise patch confined to small region that

can be printed and placed in the classifier’s field of view

to cause misclassification. To generate adversarial patch p′,
[4] proposed a patch operator A(p,x, l, t) for a given image

x, patch p, location l and a set of transformation t. During

optimization, patch operator A applies a set of transforma-

tions to the patch p and then projects it onto the image x at

a location l to increase likelihood of target class ȳ.

p′ = max
p

Ex∼X,t∼T,l∼L[F(ȳ | A(p,x, l, t))] (4)

where X represent training images, T represents distribu-

tion over transformations, and L is a distribution over loca-

tions in the image.

4. Defense: Local Gradients Smoothing
Both of the above discussed attacks [12, 4] introduce

high frequency noise concentrated at a particular image lo-

cation and strength of such a noise becomes very prominent

in image gradient domain. We propose that the effect of

such adversarial noise can be reduced significantly by sup-

pressing high frequency regions without effecting the low

frequency image areas that are important for classification.

An efficient way to achieve this is by projecting scaled nor-

malized gradient magnitude map onto the image to directly

suppress high activation regions. To this end, we first com-

pute the magnitude of first-order local image gradients as

follows:

‖ ∇x(a, b) ‖=

√(
∂x

∂a

)2

+

(
∂x

∂b

)2

, (5)

where a, b denote the horizontal and vertical directions in

the image plane. The range of the gradient magnitude cal-

culated using the above equation is normalized for consis-

tency across an image as follows:

g(x) =
‖ ∇x(a, b) ‖ − ‖ ∇x(a, b) ‖min

‖ ∇x(a, b) ‖max − ‖ ∇x(a, b) ‖min
. (6)
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Figure 2: (a) and (e) show adversarial examples generated by LaVAN [12] and adversarial patch [4] respectively, (b) and (f)

show normalized gradients magnitude before applying windowing operation to look for highest activation regions, (c) and (g)

show concept of window search to estimate noise regions, (d) and (h) show normalized gradients magnitude after applying

windowing operation.

The normalized gradient g(x) is projected onto the origi-

nal image to suppress noisy perturbations in the input data

domain. This operation smooths out very high frequency

image details. As demonstrated by our evaluations, these

regions have high likelihood of being perturbed areas, but

they do not provide significant information for final classi-

fication. The noise suppression is performed as follows:

T (x) = x� (1− λ ∗ g(x)), (7)

where λ is the smoothing factor for LGS and λ ∗ g(x) is

clipped between 0 and 1. Applying this operation at a global

image level, however, introduces image structural loss that

causes a drop in classifier’s accuracy on benign examples.

To minimize this effect, we design a block-wise approach

where gradient intensity is evaluated within a local window.

To this end, we first divide the gradient magnitude map into

a total of K overlapping blocks of same size (τ ) and then fil-

ter these blocks based on a threshold (γ) to estimate highest

activation regions which also have the highest likelihood of

adversarial noise. This step can be represented as follows:

g′
h,w = W(g(x), h, w, τ, o) ∈ R

τ ,

ĝh,w =

{
g′
h,w, if 1

|g′
h,w|

∑
i

∑
j g

′
h,w(i, j) > γ

0, otherwise.
(8)

where | · | denotes the cardinality of each patch, o denotes

the patch overlap, W(·) represent the windowing operation,

h,w denote the vertical and horizontal components of the

top left corner of the extracted window, respectively. We set

the block size τ = 15×15 with 5×5 overlap and threshold

is 0.1 in all of our experiments. The updated gradient blocks

represented as ĝh,w are then collated to recreate the full gra-

dient image: ḡ = W−1({ĝh,w}K1 ). Figure 2 shows the ef-

fect of windowing search on gradients magnitude maps.

5. Experiments

5.1. Protocol and Results Overview

We used Inception v3 model [23] to experiment with var-

ious attack and defense mechanisms in all of our experi-

ments. All attacks are carried out in white-box settings. We

consider the validation set available with Imagenet-2012

dataset in our experiments. This set consists of a total of

50k images. We report top-1 accuracy of classifier. Results

are summarized in tables 1, 2 and 3.

LaVAN [12] can be optimized for triplets (target, con-

fidence, location) but it is highly sensitive to noise loca-

tion. Adversary loses its effect with even a small change to

the pixel location. To reduce the computational burden and

conduct experiments on a large scale, we randomly chose

noise location along border areas of the image because they

have the least probability to cover the salient object. We ran

1000 iterations of attack optimization per image. We ter-

minate the optimization early if classifier mis-classify with



No Attack 42x42 noise patch

covering ∼2% of image

52x52 noise patch

covering ∼3% of image

60x60 noise patch

covering ∼ 4% of image

No Defense 75.61% 11.00% 2.79% 0.78%

LGS [lambda=2.3] 71.05% 70.90% 69.84% 69.37%
LGS [lambda=2.1] 71.50% 70.80% 69.54% 68.56%

LGS [lambda=1.9] 71.84% 70.40% 68.84% 66.98%

LGS [lambda=1.7] 72.30% 69.55% 67.32% 63.38%

LGS [lambda=1.5] 72.72% 67.68% 64.13% 55.67%

DW 52.77% 67.70% 66.19% 64.57%
MF [window=3] 70.59% 63.90% 62.15% 59.81%
GF [window=5] 61.75% 59.52% 57.68% 55.29%

BF [window=5] 65.70% 61.53% 58.70% 55.59%

JPEG [quality=80] 74.35% 18.14% 6.23% 2.06%

JPEG [quality=60] 72.71% 25.69% 11.86% 4.85%

JPEG [quality=40] 71.20% 37.10% 23.26% 12.73%

JPEG [quality=30] 70.04% 45.00% 33.72% 22.04%

JPEG [quality=20] 67.51% 52.84% 46.25% 37.19%

JPEG [quality=10] 60.25% 53.10% 48.73% 43.59%
TMV [weights=10] 70.21% 14.48% 4.64% 1.73%
TMV [weights=20] 72.85% 13.24% 3.78% 1.17%

TMV [weights=30] 73.85% 12.79% 3.53% 1.04%

BR [depth=1] 39.85% 25.93% 15.14% 9.73%
BR [depth=2] 64.61% 16.32% 6.15% 2.68%

BR [depth=3] 72.83% 13.4% 3.89% 1.25%

Table 1: Summary of Inception v3 performance against LaVAN attack on ImageNet validation set with and without defenses

including local gradient smoothing (LGS), digital watermarking (DW), median filtering (MF), Gaussian filtering (GF), bi-

lateral filtering (BF), JPEG compression, total variance minimization (TVM) and bit-depth reduction (BR). Bold numbers

represent the best accuracy of a certain defense against LAVAN attack.

confidence above than or equal to 99% or we let it run for

at max 1000 iterations and attack is considered to be suc-

cessful if the image label is changed to a random target (not

equal to the true object class). Inceptionv3 model accepts

299x299 image as an input. Three adversarial noise masks

with size 42x42 (∼2% of the image), 52x52 (∼3% of the

image) and 60x60 (∼4% of the image) were applied. Ta-

ble 1 presents summary of all the results. For the case of

adversarial patch [4] attack, placing a patch of size 95x95

( 10% of the image) randomly on all Imagenet validation

set was not possible because it would cover most of salient

objects details in an image. So we carefully created 1000

adversarial examples that model misclassified as a toaster

with a confidence score at least 90%. We then applied all the

defense techniques and reported results in Table 2. Figure

3 shows runtime of defense methods to process ImageNet

[18] validation set. We used optimized python implementa-

tions. Specifically, we employed JPEG from Pillow, Total

variance minimization (TVM), and Bilateral filtering (BF)

from scikit-image, Median filtering (MF) and Gaussian fil-

tering (GF) from scipy, and LGS and Bit Depth Reduction

(BR) are written in python 3.6 as well. All experiments

were conducted on desktop windows computer equipped

with Intel i7-7700k quad-core CPU clocked at 4.20GHz and

32GB RAM.

Defense None LGS DW MF JPEG TVM BR

Adversarial

Patch

0% 90.5% 80% 49.10% 45% 1% 0%

Table 2: Accuracy of Inception v3 against adversarial patch

attack with and without defense. The size of adversarial

noise is 95x95 covering ∼10% of image. LGS is used with

λ = 2.3, DW in blind defense scenario, MF with win-

dow equal to 3, JPEG compression with quality equal to 30,

TVM with weights equal to 10 and BR with depth 3. This

hyperparameter choice was made for fair comparison such

that the performance on benign examples from ImageNet is

approximately the same (first column of Table 1). Results

are reported for 1000 adversarial examples misclassified as

toaster with confidence above than 90%.

5.2. Comparison with Related Defenses

In this section, we report comparisons of our approach

with other recent defense methods that transform the in-

put sample to successfully reduce the adversarial effect.

The compared methods include both global and local tech-

niques. Note that our method processes image locally so it

has advantage over other defenses like JPEG, MF, TVM and

BR that process image globally. First, we provide a brief de-
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Figure 3: Computational cost comparison of defense meth-

ods to process 50k ImageNet validation images. Graph is

shown in log scale for better visualization with actual pro-

cessing times written on the top of each bar in seconds.

scription of the competing defenses which will allow us to

elaborate further on the performance trends in Tables 1, 2

and 3.

5.2.1 Digital Watermarking

Hayes et.al [10] presented two, non-blind and blind, defense

strategies to tackle the challenge of localized attacks [12, 4].

Non-blind defense considers a scenario, where defender has

the knowledge of adversarial mask location. This is unlikely

scenario in the context of adversarial attacks because threat

is over immediately, once the adversary provides the mask

location. Localized attacks have the ability to change the

attention of classifier from the original object to adversar-

ial mask. In their blind defense, authors [10] exploited the

attention mechanism by first finding the mask location us-

ing saliency map and then processing that area before in-

ference. Using saliency map to detect adversarial mask lo-

cation is the strength of this defense but at the same time

its also the weakness of defense because on benign exam-

ples, saliency map will give the location of original object

and hence processing original object will decrease the per-

formance on clean examples. Authors [10] reported blind

defense performance to protect VGG19 [21] on only 400

randomly selected images with 12% accuracy drop on clean

images. We have tested this defense on imagenet validation

set [18] (50k images). This method has the second best ac-

curacy on adversarial examples after LGS but its accuracy

on clean examples expectedly dropped by a large margin

(22.8%). Tables 1, 2 and 3 summarizes the performance

of digital watermarking [10].

5.2.2 JPEG Compression

[6, 5, 19] extensively studied JPEG compression to defend

against adversarial attacks. This way high-frequency com-

ponents are removed that are less important to human vision

by using Discrete Cosine Transform (DCT). JPEG performs

compression as follows:

• Convert an RGB image Y CbCr color space, where Y
and Cb, Cr represent luminance and chrominance re-

spectively.

• Down-sample the chrominance channels and apply

DCT to 8× 8 blocks for each channel.

• Perform quantization of frequency amplitudes by di-

viding with a constant and rounding off to the nearest

integer.

As illustrated in Table 1, image quality decreases as the de-

gree of compression increases which in turn decreases ac-

curacy on benign examples. JPEG compression is not very

effective against localized attacks, and its defending ability

decreases a lot against BPDA. JPEG performance compari-

son is shown in Tables 1, 2 and 3 and Figure 4.

5.2.3 Feature Squeezing

The main idea of feature squeezing [26] is to limit the ex-

plorable adversarial space by reducing resolution either by

using bit depth reduction or smoothing filters. We found

that bit reduction is not effective against localized attacks,

however smoothing filter including Gaussian filter, median

filter, and bilateral filter reduces localized adversarial effect

with reasonable accuracy drop on benign examples. Among

smoothing filters, median filter outperforms Gaussian and

bilateral filters. Feature squeezing performance is shown in

Tables 1, 2 and 3 and Figure 4.

5.2.4 Total Variance Minimization (TVM)

Guo et al. [9] considered smoothing adversarial images us-

ing TVM along with JPEG compression and image quilting.

TVM has the ability to measure small variations in the im-

age, and hence it proved effective in removing small pertur-

bations. As illustrated in Table 1, TVM becomes ineffective

against large concentrated variations introduced by the lo-

calized attacks. Further comparisons are shown in Tables 2

and 3 and Figure 4.

5.3. Resilience to BPDA

BPDA [2] is built on the intuition that transformed im-

ages by JPEG or TVM should look similar to original im-

ages, that is, T (x) ≈ x. BPDA approximate gradients for

non-differentiable operators with combined forward propa-

gation through operator and DNN while ignoring operator

during the backward pass. This strategy allows BPDA to

approximate true gradients and thus bypassing the defense.

In the traditional attack setting like Projected Gradient De-

scent (PGD) [13], the explorable space available to BPDA



(a) Dragonfly
(99%)

(c) Cardoon
(94%)

(e) Cardoon
(91%)

(g) Cardoon
(89%)

(i) Dragonfly
(70%)

(k) Dragonfly
(98%)

(m) Dragonfly
(99%)

(b) Toaster
(94%)

(d) Sandpiper
(89%)

(f) Sandpiper
(45%)

(h) Sandpiper
(55%)

(j) Sandpiper
(28%)

(l) Toaster
(90%)

(n) Toaster
(92%)

Figure 4: Inception v3 confidence score is shown on example images. (a,b) represent adversarial examples generated by

LaVAN and adversarial patch respectively, (c,d) show transformed adversarial images using LGS with lambda equal to 2.3

respectively, (e,f) show transformed adversarial images using DW processing method respectively, (g,h) show transformed

adversarial images using median filter with window size 3 respectively, (i,j) show transformed adversarial images using JPEG

with quality 30 respectively, (k,l) show transformed adversarial images using TVM with weights equal to 10 respectively,

and (m,n) show transformed adversarial images using BR with depth 3.

is Rn because it can change each pixel in the image. In lo-

calized attack setting explorable space reduces to R
m<<n

controlled by the mask size. LGS suppresses the high-

frequency noise to near zero thereby significantly reducing

gradient activity in the estimated mask area and restricting

BPDA to bypass defense. However, as it is the case with all

defenses, increasing explorable space, i.e., distance limit in

PGD attack [13] and mask size in the case of localized at-

tack [12], protection ability of defense methods decreases.

To test performance against BPDA in the localized setting,

we randomly selected 1000 examples from Imagenet and

attack is optimized against all defenses for the same target,

location, mask size and number of iterations. Compared to

other defenses methods, LGS significantly reduces the ex-

plorable space for localized adversarial attacks within mask

size equal to ∼ 2% of the image as discussed in [12]. In the

case of DW [10] defense, we tested BPDA against the pro-

posed input processing given the mask location. Summary

of attack success rate against defense methods is presented

in Table 3.

6. Discussion and Conclusion

In this work, we developed a defense against localized

adversarial attacks by studying attack properties in gradi-

ent domain. Defending against continuously evolving ad-

versarial attacks has proven to be very difficult especially

with standalone defenses. We believe that in critical secu-

rity applications, a classifier should be replaced by a robust

classification system with following main decision stages:

Defense None LGS DW MF JPEG TVM BR

LaVAN with

BPDA

88% 18% 25.6% 75% 73.30% 78.10% 83%

Table 3: Attack success rate against Inception v3 with and

without defense (lower is better). The size of adversarial

noise 42x42 covering ∼2% of image. LGS is used with

λ = 2.3, DW in blind scenario, MF with window equal to

3, JPEG compression with quality equal to 30, TVM with

weights equal to 10 and BR with depth 3. This hyperpa-

rameter choice was made for fair comparison such that the

performance on benign examples from ImageNet is approx-

imately the same (first column of Table 1). Attack is opti-

mized for 1000 randomly selected images for the same tar-

get, location and mask size.

• Detection: given the unlimited distortion space, any

image can be converted into an adversarial example

that can bypass any defense system with 100% suc-

cess rate [2]; however, this also pushes the adversarial

example away from the data manifold, and it would be

easier to detect rather than removing the perturbation.

• Projection or Transformation: Adversarial examples

within a small distance of original images can be ei-

ther projected onto the data manifold or transformed

to mitigate the adversarial effect.

• Classification: Final stage should be to perform a for-

ward pass through a DNN, whose robustness is in-

creased via adversarial training.



Our method performs a transformation, so it falls into the
second stage of robust classification systems. LGS out-
performs digital watermarking, JPEG compression, feature
squeezing and TVM against localized adversarial attacks
with minimal drop in accuracy on benign examples. LGS
can be used with a combination of other defense methods,
for example, smoothing filters like low pass filter can be
applied just on the estimated noisy region to enhance pro-
tection for a DNN further.
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